12,078 research outputs found

    Nonlinear Preconditioning: How to use a Nonlinear Schwarz Method to Precondition Newton's Method

    Get PDF
    For linear problems, domain decomposition methods can be used directly as iterative solvers, but also as preconditioners for Krylov methods. In practice, Krylov acceleration is almost always used, since the Krylov method finds a much better residual polynomial than the stationary iteration, and thus converges much faster. We show in this paper that also for non-linear problems, domain decomposition methods can either be used directly as iterative solvers, or one can use them as preconditioners for Newton's method. For the concrete case of the parallel Schwarz method, we show that we obtain a preconditioner we call RASPEN (Restricted Additive Schwarz Preconditioned Exact Newton) which is similar to ASPIN (Additive Schwarz Preconditioned Inexact Newton), but with all components directly defined by the iterative method. This has the advantage that RASPEN already converges when used as an iterative solver, in contrast to ASPIN, and we thus get a substantially better preconditioner for Newton's method. The iterative construction also allows us to naturally define a coarse correction using the multigrid full approximation scheme, which leads to a convergent two level non-linear iterative domain decomposition method and a two level RASPEN non-linear preconditioner. We illustrate our findings with numerical results on the Forchheimer equation and a non-linear diffusion problem

    SUSY structures, representations and Peter-Weyl theorem for S1∣1S^{1|1}

    Full text link
    The real compact supergroup S1∣1S^{1|1} is analized from different perspectives and its representation theory is studied. We prove it is the only (up to isomorphism) supergroup, which is a real form of (C1∣1)×({\mathbf C}^{1|1})^\times with reduced Lie group S1S^1, and a link with SUSY structures on C1∣1{\mathbf C}^{1|1} is established. We describe a large family of complex semisimple representations of S1∣1S^{1|1} and we show that any S1∣1S^{1|1}-representation whose weights are all nonzero is a direct sum of members of our family. We also compute the matrix elements of the members of this family and we give a proof of the Peter-Weyl theorem for S1∣1S^{1|1}

    Automated Classification of 2000 Bright IRAS Sources

    Full text link
    An Artificial Neural Network (ANN) has been employed using a supervised back-propagation scheme to classify 2000 bright sources from the Calgary database of IRAS (Infrared Astronomy Satellite) spectra in the wavelength region of 8-23 microns. The data base has been classified into 17 pre-determined classes based on spectral morphology. We have been able to classify more than 80 percent of the 2000 sources correctly at the first instance. The speed and robustness of the scheme will allow us to classify the whole of LRS database, containing more than 50,000 sources in the future.Comment: 26 pages, To appear in ApJS after July 200

    Integro-differential diffusion equation for continuous time random walk

    Full text link
    In this paper we present an integro-differential diffusion equation for continuous time random walk that is valid for a generic waiting time probability density function. Using this equation we also study diffusion behaviors for a couple of specific waiting time probability density functions such as exponential, and a combination of power law and generalized Mittag-Leffler function. We show that for the case of the exponential waiting time probability density function a normal diffusion is generated and the probability density function is Gaussian distribution. In the case of the combination of a power-law and generalized Mittag-Leffler waiting probability density function we obtain the subdiffusive behavior for all the time regions from small to large times, and probability density function is non-Gaussian distribution.Comment: 12 page

    Realization of Artificial Ice Systems for Magnetic Vortices in a Superconducting MoGe Thin-film with Patterned Nanostructures

    Full text link
    We report an anomalous matching effect in MoGe thin films containing pairs of circular holes arranged in such a way that four of those pairs meet at each vertex point of a square lattice. A remarkably pronounced fractional matching was observed in the magnetic field dependences of both the resistance and the critical current. At the half matching field the critical current can be even higher than that at zero field. This has never been observed before for vortices in superconductors with pinning arrays. Numerical simulations within the nonlinear Ginzburg-Landau theory reveal a square vortex ice configuration in the ground state at the half matching field and demonstrate similar characteristic features in the field dependence of the critical current, confirming the experimental realization of an artificial ice system for vortices for the first time.Comment: To appear in Phys. Rev. Let
    • …
    corecore